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Adiabatic Quantum Gates
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We discuss the logic implementation of quantum gates in the framework of the quan-
tum adiabatic method, which uses the language of ground states, spectral gaps and
Hamiltonians instead of the standard unitary transformation language.
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1. INTRODUCTION

Recently, a newer subfield emerged of quantum algorithms based on adiabatic
evolution (Farhi et al.; van Dam, Mosca, and Vazirani, 2001). In the adiabatic quan-
tum computation model, a computational procedure is described by the continuous
time-dependence of a Hamiltonian. Here, we discuss the logic implementation of
quantum gates in the framework of adiabatic quantum method, which uses the
language of ground states, spectral gaps and Hamiltonians instead of the standard
unitary transformation language. This approach is legitimate because a quantum
gate represents a device which performs a unitary transformation on selected qubits
in a fixed period of time, using limited energetic resources, an aspect often ne-
glected in the standard unitary gate language (Nielsen and Chuang, 2000).

2. THE ADIABATIC THEOREM

Consider a quantum system in a state |ψ(t)〉, which evolves according to the
Schrödinger equation

i
d

dt
|ψ(t)〉 = Ĥ (t)|ψ(t)〉 (1)

where Ĥ (t) is the Hamiltonian of the system (we let h = 1). To state the adiabatic
theorem, it is convenient and traditional to work with a re-scaled time s = t/T
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where T is the total time (or delay schedule). The Schrödinger equation restated
in terms of the re-scaled time s then reads

i
d

ds
|ψ(s)〉 = T Ĥ (s)|ψ(s)〉 (2)

The Adiabatic Theorem referes to a property of the states of the energy spectrum
of Ĥ (s) (Messiah, 1976; Bransden and Joachain, 2000). For the sake of simplicity
we shall suppose the spectrum of Ĥ (s) to be entirely discrete. Also, we assume
that the quantum system corresponds to a set of n qubits. In addition we suppose
that

1. The eigenvalues E j (s) and the associated eigenstates |ξ j (s)〉, j = 0, . . . ,
2n − 1, of Ĥ (s) are smooth functions of s ∈ [0, 1].

2. The eigenvalues of Ĥ (s) remains distinct throughout the transition period
s ∈ [0, 1]: E j (s) 	= Ek(s), ∀ j 	= k.

The second conditions is equivlent to the ordering condition: E0(s) < E1(s) <
· · · < EN (s). We say that |ξ0(s)〉 is the groundstate, |ξ1(s)〉 is the first excited state
and |ξN (s)〉 is the N th excited state of the system.

The Hamiltonian of the system is therefore given by

Ĥ (s) =
N∑

j=0

E j (s)P̂j (s) (3)

where N = 2n − 1, and P̂ j (s) = |ξ j (s)〉〈ξ j (s)| is the projector onto the subspace
of E j (s). The Hamiltonian evolution from Ĥ (0) to Ĥ (1) induces the unitary trans-
formation ÛT (the evolution operator). The evolution operator ÛT(s) satisfies the
equation

i
d

ds
ÛT(s) = T Ĥ (s)ÛT(s) (4)

The Adiabatic Theorem states that ÛT(s) has the following asymptotic property

lim
T →∞

ÛT(s)P̂j (0) = P̂j (s) lim
T →∞

ÛT(s) (5)

j = 0, . . . , N . Thus, if | j〉 = |ξ j (0)〉 is an eigenvector of Ĥ (0) beloging to the
eigenvalue E j (s), then the vector ÛT(s)P̂j (0)| j〉 = ÛT(s)| j〉 tends toward a vector
of the subspace of E j (s) when T → ∞.

It is usefull to estimate the minimum delay schedule T , that it takes for this
evolution to be adiabatic. The crucial quantities for this transformation are the
minimum gap between the eigenstates

δmin = min
j 	=k

min
0≤s≤1

[E j (s) − Ek(s)] (6)



Adiabatic Quantum Gates 935

and the maximum rate at which the Hamiltonian can be modified

�max = max
s∈[0,1]

∥∥∥∥ d

ds
Ĥ (s)

∥∥∥∥
2

(7)

It can be shown that a minimum delay schedule T with

T = �max

εδ2
min

(8)

where 0 < ε � 1, is sufficiently slow for the adiabatic evolution from Ĥ (0) to
Ĥ (1).

3. ADIABATIC QUANTUM GATES

3.1. Hadamard Gate

Let us consider the case of the Hadamard gate

W = 1√
2

[
1 1
1 −1

]
(9)

which acts on a single qubit as following

W |0〉 = 1√
2

(|0〉 + |1〉)

W |1〉 = 1√
2

(|0〉 − |1〉) (10)

Now, let us consider the following Hamiltonian

Ĥ (s) = (1 − s)Ĥ 0 + s Ĥ 1 (11)

where

Ĥ 0 = −E |0〉〈0| + E |1〉〈1| (12)

and

Ĥ 1 = − E

2
(|0〉 + |1〉) (〈0| + 〈1|) + E

2
(|0〉 − |1〉) (〈0| − 〈1|) (13)

It is convenient to choose E = 1. The intial Hamiltonian Ĥ 0 has the ground state
|ξ0(0)〉 = |0〉 with E0(0) = −1, and the excited state |ξ1(0)〉 = |1〉 with E1(0) =
1. The final Hamiltonian Ĥ 1 has the ground state |ξ0(1)〉 = 1√

2
(|0〉 + |1〉) with

E0(1) = −1, and the excited state |ξ1(0)〉 = 1√
2
(|0〉 − |1〉) with E1(1) = 1. Thus,

if the conditions from the adiabatic theorem are satisfied, one obtain the results
corresponding to the Hadamard gate.
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One can easily calculate the energy gap and the matrix element as functions
of s:

δ(s) = 2
√

1 − 2s + 2s2 (14)

�(s) =
∣∣∣∣∣〈ξ1(s)|d Ĥ

ds
|ξ0(s)〉

∣∣∣∣∣
= 2s√[

s2 + (
1 − s + 1

2δ(s)
)2][

s2 + (
1 − s − 1

2δ(s)
)2] (15)

The gap δ(s) and the matrix element �(s) are a smooth function for s ∈ [0, 1]. The
extreme values are obtained for s = 1/2: δmin = δ(1/2) = √

2, �max = �(1/2) =√
2. Thus, the minimum delay schedule for the adiabatic Hadamard gate is T =

1√
2
ε−1.

3.2. Controlled-NOT Gate

The prototypical controlled operation is the controlled-NOT (CNOT). CNOT
is a quantum gate with two input qubits, known as the control qubit |c〉 and target
qubit |t〉, respectively. In terms of of the computational basis, the action of CNOT
is given by

|c〉|t〉 → |c〉|c ⊕ t〉 (16)

where ⊕ is the modulo 2 addition. That, is if the control qubit is set to |1〉 then the
target qubit is flipped, otherwise the target qubit is left alone.

We consider the following Hamiltonian

Ĥ (s) = (1 − s)Ĥ 0 + s Ĥ 1 + As(1 − s)Ĥ 01 (17)

where A is a constant,

Ĥ 0 = E3|00〉〈00| + E2|01〉〈01| + E1|10〉〈10| + E0|11〉〈11| (18)

Ĥ 1 = E3|00〉〈00| + E2|01〉〈01| + E1|11〉〈11| + E0|10〉〈10| (19)

and

Ĥ 01 = (E1 − E0)(|10〉〈11| + |11〉〈10|) (20)

The extra piece of the Hamiltonian, Ĥ 01, is turned off at the beginning and end
of the evolution. In order to simplify the description we choose Ek = k, where
k = 0, 1, 2, 3.

The first two eigenvalues of the Hamiltonian are

E0,1(s) = 1

2
(1 ∓

√
1 − 4s + 4(1 + A2)s2 − 8A2s3 + 4A2s4) (21)
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If A = 0 then E0(s) = s and E1(s) = 1 − s and the gap is δ01(s) = 1 − 2s. There-
fore, the adiabaticity condition cannot be satisfied because δmin = δ01(1/2) = 0.
Thus, we must have A 	= 0. It is convenient to choose A = 1. In this case, the
eigenvalues are: E0(s) = s(1 − s), E1(s) = 1 − s(1 − s), E2 = 2, E3 = 3. The
minimum gap is δmin = δ01(1/2) = 1/2. It is easy to show that the matrix ele-
ments are constant: �01 = 1 and � jk = 0, ( j, k) 	= (0, 1). Thus, the minimum
delay schedule for the adiabatic CNOT gate is T = 4ε−1.

3.3. Toffoli Gate

The Toffoli gate has three input qubits. The first two qubits are control qubits,
and they are unaffected by the action of the Toffoli gate. The third qubit is the
target qubit that is flipped if both control qubits are set to |1〉. So, the effect of the
Toffoli gate is described by

|c1〉|c2〉|t〉 → |c1〉|c2〉|c1c2 ⊕ t〉 (22)

The Hamiltonian is similar to the one we used for the CNOT gate (17) with A = 1.
Here we have

Ĥ 0 = E7|000〉〈000| + E6|001〉〈001| + E5|010〉〈010| + E4|011〉〈011|
+E3|100〉〈100| + E2|101〉〈101| + E1|110〉〈110| + E0|111〉〈111| (23)

Ĥ 1 = E7|000〉〈000| + E6|001〉〈001| + E5|010〉〈010| + E4|011〉〈011|
+E3|100〉〈100| + E2|101〉〈101| + E1|111〉〈111| + E0|110〉〈110| (24)

and

Ĥ 01 = (E1 − E0) (|110〉〈111| + |111〉〈110|) (25)

We assume that Ek = k, where k = 0, . . . , 7. In this case, the eigenvalues are:
E0(s) = s(1 − s), E1(s) = 1 − s(1 − s), E j = j , j = 2, . . . , 7. The minimum gap
is δmin = δ01(1/2) = 1/2. Also, it is easy to show that the matrix elements are
constant: �01 = 1 and � jk = 0, ( j, k) 	= (0, 1). Thus, the minimum delay schedule
for the adiabatic Toffoli gate is also T = 4ε−1.

4. CONCLUSIONS

It is well known that the Hadamard and Toffoli gates represent the simplest
universal set of gates (Aharonov). The Toffoli gate can perform exactly all classical
reversible computation. The Hadamard gate is all that one needs to add to classical
computations in order to achieve the full quantum computation power, since the
Hadamard gate is the Fourier transform over the group Z2. From a conceptual
point of view, this is the simplest and most natural universal set of gates that
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one can hope for. Here, we have discussed the logic implementation of quantum
gates in the framework of quantum adiabatic method, which uses the language
of ground states, spectral gaps and Hamiltonians instead of the standard unitary
transformation language. We have shown that the logic of unitary quantum gates
can be easily implemented using simple adiabatic Hamiltonians.

ACKNOWLEDGMENTS

This work was supported by grants from the Defence R&D Canada and
Natural Sciences and Engineering Research Council of Canada.

REFERENCES

Aharonov, D., quant-ph/0301040; Y. Shi, quant-ph/0205115.
Bransden, B. H. and Joachain, C. J. (2000). Quantum Mechanics, Pearson Education.
Farhi, E., Goldstone, J., Gutmann, S., and Sipser, M. quant-ph/0001106.
Messiah, A. (1976). Quantum Mechanics, Vol. II Wiley, New York.
Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information,

Cambridge University Press.
van Dam, W., Mosca, M., and Vazirani, U. (2001). Proceedings of the 42nd Annual Symposium on

Foundations of Computer Science, pp. 279–287.


